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Abstract. We study the spontaneous emission properties of a V-type three-level atom embedded in a
photonic crystal with the anisotropic dispersion relation. We show that the localized field can disappear
and the diffusion field can become intense in some regions. This originates from no singularity of the density
of states. The quantum interference leads to oscillatory, quasi-oscillatory or complete decay behavior of
population. The complete decay can also be realized in certain condition without depending on the initial
state.

PACS. 42.70.Qs Photonic bandgap materials – 42.50.Dv Nonclassical field states; squeezed, antibunched,
and sub-Poissonian states; operational definitions of the phase of the field; phase measurements –
32.80.Bx Level crossing and optical pumping

1 Introduction

Photonic crystals are artificially created three-dimensional
periodic dielectric structures [1–3] with the existence of
one or several full photonic band gaps (PBG). The prop-
agation of electromagnetic (EM) waves with frequencies
within the gaps is forbidden in all directions, similar to
the case of electron waves propagating in a crystal. The
periodic dielectric structures make the dispersion relation
in photonic crystals different strongly from that in vac-
uum. The density of states (DOS) varies rapidly with fre-
quency in a manner determined by the photon dispersion
relation, ωk. The electromagnetic field mode density in
photonic crystals is deformed due to the modification of
the dispersion relation. The properties of photonic crystals
provides a way to control spontaneous emission of the ex-
cited atom [4–10], which would promote the development
of optics and optoelectronics, and has many important
applications [3]. The previous studies show that the gap
edge has great influences on optical behavior of an atom
in a photonic crystal, and many interesting effects have
been predicted when radiative transitions of the atoms are
near resonant with the photonic band edge, such as sup-
pression and even complete cancellation of spontaneous
emission, the formation of photon-atom bound states [4,
6–8], spectral splitting [5,8], periodic and quasiperiodic
oscillations, enhancement of spontaneous emission inter-
ference [8], coherent control of spontaneous emission [10],
non-exponential spontaneous emission [4,6] etc.
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Many earlier studies are based on the isotropic model,
and the photon dispersion relation ωk near the band
edge was assumed to be isotropic [4–10] and described by
ωk = ωc +A(k − k0)2. This assumption is not suitable as
for the real photonic crystals because a real photonic crys-
tal in general has an anisotropic structure in the momen-
tum space (relation of ω over k),and a three-dimensional
anisotropic dispersion relation is required. For a real three-
dimensional photonic crystal with an allowed point-group
symmetry, the band edge is associated with a specific point
k = k0 or a finite collection of symmetry related points
rather than the entire sphere |k| = |k0|. For example, the
collection of symmetry points kn0 are the eight L points
on the surface of the first Brillouin zone (BZ) of a dia-
mond photonic crystal structure. Although the isotropic
dispersion relation is formally simple, it overestimates the
effects of the band edge because the isotropic dispersion
relation represents that the band edge can appear on the
surface of the entire sphere |k| = |k0|. The great differ-
ence between anisotropic and isotropic photonic crystals
stems from the dependence of density of state (DOS) on
the band edge. As for the three-dimensional case with
anisotropic dispersion relation, the density of state is pro-
portional to (ωk−ωc)1/2 for (ωk > ωc) (ωk is the frequency
of the kth vacuum mode) which is not singular. In con-
trast, for an isotropic band gap structure with isotropic
dispersion relation, the density of state is proportional to
(ωk − ωc)−1/2 for (ωk > ωc), which leads to a singular-
ity at the band edge. In a recent paper on spontaneous
emission from a two-level atom in a photonic crystal with
anisotropic dispersion relation, some novel properties are
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Fig. 1. The scheme of the three-level atom in this system.

shown [11]. We predict that the difference of the density
of states can also significantly change the properties of the
spontaneous emission from a three-level atom because the
density of states plays an important role in the interaction
between light and materials.

In this paper, we investigate the spontaneous emis-
sion from a V-type three-level atom embedded in a
three-dimensional photonic crystal when the anisotropic
dispersion relation is taken into account. We found the
significant difference between the isotropic and anisotropic
models resulting from the difference of the DOS. The lo-
calized field can disappear and the diffusion field can be-
come intense in some regions. The population displays
oscillatory, quasi-oscillatory or complete decay behaviors
because of the quantum interference. The complete decay
can be realized with any initial state in certain condition.

This paper is outlined as follows: in next section we
present the model and the basic theory to study the spon-
taneous emission; in Section 3, we investigate the prop-
erties of the emitted field in detail. The properties of
the population trapped in the excited state are discussed
in Section 4.

2 The model and the basic theory

We consider a three-level atom with two upper levels |a1〉,
|a2〉 and a lower level |a3〉 (as shown in Fig. 1) embedded
in an anisotropic photonic crystal. The two upper levels
|a1〉, |a2〉 are coupled by the same vacuum modes to the
ground level |a3〉. The resonant transition frequencies be-
tween levels |a1〉, |a2〉 and |a3〉 are, respectively, ω1 and ω2,
which are assumed to be near the band edge. The energy
of the lower level |a3〉 is set to be zero. Near the band edge
of the three-dimensional photonic crystal, ωc, the disper-
sion relation for the k whose directions are near one of kn0
(n = 1, 2 ...8) could be expressed approximately as:

ωk = ωc +A|k− kn0 |2 (1)

where ωc is the cut-off frequency of the corresponding
band edge, and A is a model dependent constant. The
band edge DOS corresponding to equation (1) takes the
form ρ(ω) ∼ (ω − ωc)1/2 for ω > ωc.

Performing the rotating wave approximation (RWA)
for the interaction term, the second quantized Hamilto-
nian for the system under consideration takes the form:

Ĥ =
∑
j=1,2

~ωj|aj〉〈aj |+
∑
k

~ωkb†kbk

+ i~
∑
k

∑
j=1,2

[
g

(j)
k b†k|a3〉〈aj | − h.c.

]
(2)

where bk (b†k) is the radiation field annihilation (creation)
operator for the kth electromagnetic mode with frequency
ωk. The coupling constants between the kth electromag-
netic mode and the atomic transitions |aj〉 → |a3〉(j =
1, 2) are g(j)

k = (ωjdj/~) (~/2ε0ωkV0)1/2 ek · uj , which are
assumed to be real. k represents both the momentum and
polarization of the radiation modes. dj and uj are the
magnitude and unit vector of the atomic dipole moment
of the transitions, V0 is the quantization volume, ek are
the two transverse unit vectors, and ε0 is the Coulomb
constant.

The state vector of the system at any time t can be
written as:

|Ψ(t)〉=
∑
j=1,2

Aj(t)e−iωjt|aj〉|0〉f+
∑
k

Bk(t)e−iωkt|a3〉|1k〉f ,

(3)

where the state vectors |aj〉|0〉f (j = 1, 2) describe the
atom in its excited states |aj〉 and no photons are present
in reservoir modes, and the state vector |a3〉|1〉f describes
the atom in its ground state |a3〉 with a single photon in
kth mode with frequency ωk. We assume the atom initially
to be excited, i.e. |A1(0)|2 + |A2(0)|2 = 1 and Bk(0) = 0.
Substituting equations (2, 3) into the Schrödinger equa-
tion, we can obtain the following equations about the am-
plitudes A1(t), A2(t) and Bk(t):

∂

∂t
A1(t) = −

∑
k

g
(1)
k Bk(t)e−i(ωk−ω1)t,

∂

∂t
A2(t) = −

∑
k

g
(2)
k Bk(t)e−i(ωk−ω2)t, (4)

∂

∂t
Bk(t) = g

(1)
k A1(t)ei(ωk−ω1)t + g

(2)
k A2(t)ei(ωk−ω2)t.

Formally integrating the third equation in equations (4)
and substituting it into the preceding two equations, we
use the Laplace transform to get the Laplace transforms
A1,2(s) for the amplitudes A1,2(t):

A1(s) =
A1(0)(s− iω12 + Γ22)−A2(0)Γ12

(s+ Γ11)(s− iω12 + Γ22)− (Γ12)2
,

A2(s− iω12) =
A2(0)(s+ Γ11)−A1(0)Γ12

(s+ Γ11)(s− iω12 + Γ22)− (Γ12)2
(5)

where Γlm =
∑
k g

(l)
k g

(m)
k /(s − i(ω1 − ωk)) (l,m = 1, 2),

ω12 = ω1−ω2. In the following discussion, we consider the
atomic dipole moments of the two transitions |ai〉 → |a3〉
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(i = 1, 2) are parallel to each other. Using the dispersion
relation equation (1), we can obtain

Γ11 = −iβ3/2
1 /(

√
ωc +

√
−is− ω1c),

Γ22 = −iβ3/2
2 /(

√
ωc +

√
−is− ω1c),

and Γ12 = −i(β1β2)3/4/(
√
ωc +

√
−is− ω1c)

with ω1c = ω1 − ωc, ω2c = ω2 − ωc, and

β
3/2
j =

[
(ωjdj)2

8πε0~A3/2

(∑
n

sin2 θn

)]
,

(j = 1, 2) (see Appendix A). θn is the angle between the
dipole vector of the atom and kn0 . In deriving Γ , the sum-
mation over k was replaced by an integration over k, and
the variables of integration was changed to q = k − kn0 .
Due to the anisotropy in three-dimensional photonic crys-
tals, both the direction and magnitude of the band edge
wavevector are modified as k moves away from kn0 . So the
integration over k has to be carried out around the direc-
tions of each kn0 , respectively. For the sake of simplicity, we
assume g(1)

k = g
(2)
k = gk, and we have β3/2

1 = β
3/2
2 = β3/2,

Γ11 = Γ22 = Γ12 = Γ . At this point, it should be stressed
that the phase angle of

√
−is− ω1c in Γ has been defined

as −π/2 < arg(
√
−is− ω1c) < π/2.

The amplitudes A1(t), A2(t) can be calculated by
means of the inverse Laplace transform

A1(t) =
1

2πi

∫ σ+i∞

σ−i∞
A1(s)estds,

A2(t) =
e−iω12t

2πi

∫ σ+i∞

σ−i∞
A2(s− iω12)estds. (6)

Here the real constant σ is chosen so that s = σ lies to
the right of all the singularities (poles and branch points)
of Ai(s) (i = 1, 2). Using the inverse Laplace transform,
we obtain the expressions of the amplitudes (see Ap-
pendix B):

A1(t) =
∑
j

f1(x(1)
j )

G′(x(1)
j )

ex
(1)
j t +

∑
j

f1(x(2)
j )

H ′(x(2)
j )

ex
(2)
j t

− eiω1ct

πi

∫ ∞
0

K1(x)
R1(x) +R2(x)

e−xtdx, (7)

A2(t) = e−iω12t

∑
j

f2(x(1)
j )

G′(x(1)
j )

ex
(1)
j t +

∑
j

f2(x(2)
j )

H ′(x(2)
j )

ex
(2)
j t


− eiω2ct

πi

∫ ∞
0

K2(x)
R1(x) +R2(x)

e−xtdx, (8)

where the functions are defined as

f1(x) = (x− iω12)[A1(0)(x− iω12) +A2(0)x]/(2x− iω12),

f2(x) = x[A1(0)(x− iω12) +A2(0)x]/(2x− iω12),

G(x) = x(x− iω12)− iβ3/2(2x− iω12)/(
√
ωc +

√
−ix− ω1c),

H(x) = x(x− iω12)− iβ3/2(2x− iω12)/(
√
ωc − i

√
ix+ ω1c),

K1(x) = β3/2
√
−ix(x− iω2c)(ωc − ix)

×[A1(0)(x− iω2c) +A2(0)(x− iω1c)],

K2(x) = β3/2
√
−ix(x− iω1c)(ωc − ix)

×[A1(0)(x− iω2c) +A2(0)(x− iω1c)],

R1(x) = [(x− iω1c)(x− iω2c)(ωc − ix)

+iβ3/2(2x− iω1c − iω2c)
√
ωc]

2,

R2(x) = ixβ3(2x− iω1c − iω2c)2,

where x
(1)
j are the roots of the equation G(x) = 0 in

the region (Im(x(1)
j ) > ω1c or Re(x(1)

j ) > 0), and x
(2)
j

are the roots of the equation H(x) = 0 in the region
(Im(x(2)

j ) < ω1c and Re(x(2)
j ) < 0). With the help of nu-

merical calculation, we found that there are at least one
root and at most two roots. We can classify these roots
into two types:

(i) pure imaginary root x
(1)
j with its imaginary part

larger than ω1c;
(ii) complex root x(2)

j with a negative real part and an
imaginary part smaller than ω1c.

As for the pure imaginary roots, it is easy to prove
analytically that there are two, one or no pure imaginary
roots (see Appendix C). If

ω1c ≤ ∆1 =
ω12

2
+
β3/2

√
ωc
−

√(ω12

2

)2

+
β3

ωc
,

there are two pure imaginary roots ib1, ib2 in the ranges
max(0, ω1c) < b1 < ω12/2, b2 > ω12. If

∆1 < ω1c ≤ ∆2 =
ω12

2
+
β3/2

√
ωc

+

√(ω12

2

)2

+
β3

ωc
,

there is only one pure imaginary root ib2, which is in the
range b2 > max(ω1c, ω12). If ω1c > ∆2, there are no pure
imaginary roots. The number and the characteristics of
the roots depend on the relative position of the two upper
levels from the band edge. For example, we have five re-
gions in the space of (ω1c, ω12) with ωc = 100β (as shown
in Fig. 2) according to the number and the values of the
roots. There are two pure imaginary roots in region I,
only one pure imaginary root in region II, one complex
root and one pure imaginary root in region III, only one
complex root in region IV, two complex roots in region V.
It is obvious that the number and the characteristics of
these roots in the present case are different from that in
the isotropic dispersion relation case [8], such as the pure
imaginary root always exists in the isotropic case. In the
following discussion, we can see that these roots are di-
rectly related to the radiation field emitted by the atom
and the population of two upper levels.
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Fig. 2. The region for roots in the case: ωc = 100β.

3 The radiation field

The radiation field at a particular space point r, can be
written as [12]:

E(r, t) =
∑
k

√
~ωk
2ε0V

e−i(ωkt−k·r)Bk(t)ek (9)

where

Bk(t) = gk

∫ t

0

[A1(t′)ei(ωk−ω1)t′ +A2(t′)ei(ωk−ω2)t′ ]dt′.

(10)

We can obtain the radiated field E(r, t) from A1(t), A2(t).
From equations (7, 8), we found E(r, t) can be expressed
as the sum of three parts: El(r, t), Ep(r, t) and Ed(r, t)

E(r, t) = El(r, t) + Ep(r, t) + Ed(r, t). (11)

The first part El(r, t) =
∑
j Ej

l (r, t) comes from the first
term in equations (7, 8). Ej

l (r, t) can be expressed as:

Ej
l (r, t) = Ej

l (0)
1
r

e−i(ω1−b(1)
j )t−r/ljΘ[t − ljr

2A
], (12)

where

Ej
l (0) =

ω1d1

8Aπε0i
f3(x(1)

j )

G′(x(1)
j )

∑
n

eikn0 ·r
[
u− kn0 (kn0 · u)

(kn0 )2

]

with f3(x) = A1(0)(x− iω12) +A2(0)x, and x(1)
j = ib(1)

j is
pure imaginary root. Θ(x) is the Heaviside step function.

Θ(x) =
{

0 x < 0,
1 x ≥ 0.

The frequency of Ej
l (r, t) is (ω1 − b(1)

j ), which is smaller
than ωc and within the forbidden band. Obviously, Ej

l (r, t)
represents a localized mode in the localized field. The am-
plitude of the localized mode drops exponentially against
the distance from the atom as e−r/lj . The size of the
localized field is determined by the localization length,
lj = [(−ix(1)

j − ω1c)/A]−1/2. The localized field El(r, t)
does not decay against time and its distribution with its
energy is trapped in the vicinity of the atom. The popu-
lation in the lower level can jump back to the upper lev-
els by absorbing the photon in the localized field, which
forms dressed states leading to fractionalized steady-state
atomic population in the excited state. If there are two
localized modes in the localized field, the quantum in-
terference between the two localized modes will lead to
population oscillation in the two upper levels.

The second part Ep(r, t) =
∑
j Ej

p(r, t) comes from
the second term in equations (7, 8). The expression of
Ej
p(r, t) is:

Ej
p(r, t) = Ej

p(0)
1
r

e(x
(2)
j −iω1)t+iqjr

×Θ
(
t− r

2A(Re + Im)(qj)

)
, (13)
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where qj = [(ix(2)
j + ω1c)/A]1/2, and

Ej
p(0) =

ω1d1

8Aπε0i
f3(x(2)

j )

H ′(x(2)
j )

∑
n

eikn0 ·r
[
u− kn0 (kn0 · u)

(kn0 )2

]
.

x
(2)
j = a

(2)
j + ib(2)

j with a
(2)
j < 0 and b

(2)
j < ω1c is a com-

plex root. The frequency of Ej
p(r, t) is (ω1− b(2)

j ), which is
larger than ωc, and within the transmitting band. Ej

p(r, t)
is a propagating mode in the radiation field emitted by the
atom. With the fact that the phase difference between any
two points in space is fixed, Ej

p(r, t) travels away coher-
ently from the atom in the form of an exponential pulse
with the phase velocity

vp =
√
A(ω1 − b(2)

j )/Re(
√
ω1c + ix(2)

j )

and the energy velocity

ve =
√
Aa

(2)
j /Im(

√
ω1c + ix(2)

j ).

The third part Ed(r, t) comes from the integration along
the cut of the single valued branches in equations (7, 8)

Ed(r, t) = Ed(0)
1
r

e−iωct+
ir2
4At+

3iπ
4

∫ ∞
0

K1(x) +K2(x)
R1(x) +R2(x)

dx

×
∫ ∞
−∞

[ye3πi/4 + r/(2
√
At)]e−y

2
dy

−xt+ i[ye3πi/4 + r/(2
√
At)]2

, (14)

where

Ed(0) =
ω1d1

8Aπ3ε0

∑
n

eikn0 ·r
[
u− kn0 (kn0 · u)

(kn0 )2

]
.

The evolution of Ed(r, t) from the atom as a function of
the time t and the distance r is given in Figure 3. As time t
increases, Ed(r, t) at any space point increases firstly from
zero to a maximum value, and then after that decreases
to zero again. As the distance r from the atom increases,
Ed(r, t) also has the similar behavior at a fixed time. The
position of the maximum Ed(r, t) goes away from the atom
with time. In long time limit, we have approximately

Ed(r, t) ∼ t−3/2e−iωct+ir2/(4At).

From the above expression, we can see that this field be-
haves as a power law decay and there is no fixed phase
difference between any two space points. The energy dif-
fuses out incoherently, and this field represents a typical
diffusion field. Moreover, we can find that the localized
El(r, t) and propagating field Ep(r, t) behave with the
well-defined frequencies ω1 − b(1,2). But for the diffusion
field, we could not find a well-defined frequency, although
its energy propagates out.

The radiation field emitted by the atom is character-
ized by the three different fields, the localized field, the
propagating field and the diffusion field. Their amplitudes
depend strongly on the relative position between the two
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Fig. 3. The diffusion field (in arbitrary unit) as a function of
the scaled time βt and distance r(β/A)1/2. Here ωc = 200β,
ω12 = 8.6β, ω1c = 0.070131β.

upper levels and the band edge. For the localized field,
the amplitude of the localized mode Ej

l (r, t) decreases (as
shown in Fig. 4), and its localized length increases as the
relative position ω1c increases. When ω1c tends to ∆1 (or
∆2), the amplitude of E1

l (r, t) (or E2
l (r, t)) tends to zero,

and its localized length tends to infinity. For the propagat-
ing field, the amplitude of the propagating mode Ej

p(r, t)
also decreases as ω1c increases (see Fig. 4). When the rel-
ative position ω1c changes from region II to region III
(or from region IV to region V), there is a pronounced
switch-on effect for the propagating mode E1

p(r, t) (or the
propagating mode E2

p(r, t)). These sudden increases of the
propagating modes can be used to design an active optical
multi-channel micro-sized switch. Furthermore, the ampli-
tude of the diffusion field changes with the variation of the
relative position ω1c and there are two regions where the
diffusion field is extremely strong (as shown in Fig. 5).
Comparing Figures 2 and 5, we find that the position and
width of the two regions with regard to the relative posi-
tion ω1c is just corresponding to regions II and IV in Fig-
ure 2. In above section, we have narrated that the width
of region II corresponds to the existence range of only one
pure imaginary root and the width of region IV is the ex-
istence range of only one complex root. We can obtain the
width of the two regions in regard to ω1c for a given ω12

through numerical calculation. So the width of the diffu-
sion field is also obtained. We note that the diffusion field
in region II (or region IV) is almost several hundred times
stronger than that in regions I, III and V. The diffusion
fields in regions I, III and V are extremely small and can
be neglected.

Therefore, there is direct relation between the prop-
erties of the radiation field and the relative position of
the two upper levels from the band edge. The main
components of the emitted radiation are two localized
modes E1

l (r, t) and E2
l (r, t) in region I, one localized

mode E2
l (r, t) and a strong diffusion field in region II, one
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Fig. 5. The amplitude square (in arbitrary
unit) of the diffusion field as a function of
the transition frequency ω1c with ωc = 100β,
ω12 = 1.6β, r

p
β/A = 1 and βt = 3 and

|Φ(0)〉 = (|a1〉+ |a2〉)/
√

2.

localized mode E2
l (r, t) and one propagating mode E1

p(r, t)
in region III, one propagating mode E1

p(r, t) and a strong
diffusion field in region IV, two propagating modes E1

p(r, t)
and E2

p(r, t) in region V.

Considering the process of the upper levels move from
in the forbidden gap to deep in the transmitting band,
we can get the following picture of the energy transla-
tion among the three different fields. When the relative
position ω1c increases to ∆1, the frequency of the local-
ized mode E1

l (r, t) is ωc, and the amplitude of E1
l (r, t) de-

creases to zero. From Figures 4 and 5, we can see that the
energy corresponding to E1

l (r, t) has been transferred to
the diffusion field. In region II, the change of the energy of
the localized field with the localized mode E2

l (r, t) and the
diffusion field is not obvious. As ω1c changes from region II
to region III, the propagating field with the propagating
mode E1

p(r, t) begins to appear and the energy of the diffu-
sion field is transferred to it. Similarly, when ω1c increases

to ∆2, the frequency of the localized mode E2
l (r, t) is ωc,

and the amplitude of E2
l (r, t) decreases to zero. The en-

ergy of the localized field with the localized mode E2
l (r, t)

has been transferred to the diffusion field. In region IV,
the energy of the propagating field with the propagating
mode E1

p(r, t) and the diffusion field is changeless. When
ω1c goes from region IV to region V, the amplitude of
the diffusion field decreases and the energy of the diffu-
sion field is transferred to the propagating field with the
propagating mode E2

p(r, t).
The radiation properties in the present system are dif-

ferent from that in the case with the isotropic dispersion
relation. The diffusion field also exists in isotropic case,
but it is so small that it is negligible all over the pho-
tonic crystal [8]. For the anisotropic model, there are two
regions II and IV where the diffusion field becomes im-
portant and can not be ignored. In the anisotropic disper-
sion case, the localized field can disappear in region IV
and V in Figure 2. In the isotropic dispersion model, such
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regions do not exist, and the localized field always exists.
Such different properties of the emitted field result from
the difference of DOS near the band edge in the two cases.
The DOS in the isotropic case leads to a singularity at the
band edge, which does not exist in the anisotropic case.
In the isotropic case, the frequency of the localized field
cannot be the frequency of the band edge ωc because of
the infinite DOS at ωc. An infinite DOS means infinite
energy requirement for the localized field. This is why we
always have the localized field and such regions IV and V
do not exist in the isotropic case. In the anisotropic case,
the frequency can be ωc because the DOS is zero at ωc,
and when it is ωc, the localized field disappears (frequency
larger than ωc is in the band).

4 The population in the two upper levels

In this section we discuss mainly the influence of the
anisotropic dispersion relation on the population in the
two upper levels.

From the previous work [4–10], we know that for a
three-level atom with transition frequencies close to the
band edge in the isotropic crystal, the localized field, the
propagating field and the diffusion field can dress the atom
simultaneously, which leads to splitting of the upper lev-
els into “dressed states” or “quasi-dressed states”. Strong
quantum interference between the “dressed states” or
“quasi-dressed states” leads to oscillatory or quasioscilla-
tory behavior of the upper levels population, which is quite
distinct from the exponential decay in an ordinary vac-
uum. A fractionalized steady-state population is trapped
in the upper level forever because of the always existence
of a localized field, even when the resonant transition fre-
quencies lie deep inside the transmitting band.

In present anisotropic case, the population in the two
upper levels of the atom can be obtained from equa-
tions (7, 8), P1(t) = |A1(t)|2, P2(t) = |A2(t)|2, and the
total population is P (t) = P1(t) +P2(t). The first term in
equations (7, 8) comes from pure imaginary roots corre-
sponding to the localized field which results in the photon-
atom bound dressed states without decay. While the sec-
ond term in equations (7, 8) comes from complex roots
corresponding to the propagating field which results in the
photon-atom bound dressed states decaying in time. The
integration along the cut of the single valued branch in
equations (7, 8) corresponding to the diffusion field yield
the quasi-dressed state decaying in time, too. The quan-
tum interference between the dressed states or the dressed
state and quasi-dressed state leads to oscillatory (Fig. 6)
or quasi-oscillatory (Figs. 7, 8, 10, 11) behavior of spon-
taneous emission decay.

From the discussion in above section, we know that
the properties of the radiation field change with the vari-
ation of the relative position of the two upper levels from
the band edge, and the properties of the radiation field
are different from each other in the regions in Figure 2.
Here the population in the two upper levels depends not
only on the relative position of the two upper levels from
the band edge but also the initial atomic states. In the
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Fig. 6. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve) and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.0178β, |Φ(0)〉 = (|a1〉+ |a2〉)/

√
2.
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Fig. 7. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve)and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.058581β, |Φ(0)〉 = |a2〉/

√
2.

following, we investigate the properties of the population
in the two upper levels when the upper levels move from
in the forbidden gap to deep in the transmitting band
corresponding to the five regions in Figure 2.

In region I in Figure 2, the relative position ω1c < ∆1,
and the emission in this region is a localized field with two
localized modes which dress the atom to form two dressed
states without decay. The quantum interference between
the two dressed states leads to oscillatory periodic behav-
ior of the population for large time t (see Fig. 6). The os-
cillatory behavior of the population represents the transfer
of population from |a1〉 to |a2〉 or vice versa and indicates
that the transfer of population between the two upper
levels always exists. Moreover, there will be more popula-
tion transferring between the two upper levels if the two
upper levels get so close that the transfer of population be-
comes easily. The period of the oscillations for P1(t), P2(t)
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Fig. 8. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve) and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.321405β, |Φ(0)〉 = (|a1〉+ |a2〉)/
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Fig. 9. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve) and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.31068β, |Φ(0)〉 = 0.925457525|a1〉 − 0.378851517|a2〉.

is 2π/(b(1)
1 − b(1)

2 ) (ib(1)
1 and ib(1)

2 are two pure imaginary
roots). Although the oscillation amplitudes K1 of P1(∞)
and K2 of P2(∞) depend on the initial state, the ratio of
the amplitudes is independent of the initial state, which is

K1

K2
=

(b(1)
1 − ω12)(ω12 − b(1)

2 )

b
(1)
1 b

(1)
2

·

The phase difference of the two periodic oscillations is π,
and the phase angle of the total population P (t) in the
excited states is the same as that of the population P2(t)
in the upper level |a2〉.

There are a localized field and a diffusion field when
ω1c within region II. The localized field dresses the atom
to form a non-decaying dressed state. In this region, the
diffusion field is so strong that it can not be ignored and
makes the atom dressed to form a quasi-dressed state de-
caying in time. In the region III, the main components
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Fig. 10. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve) and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.341555β, |Φ(0)〉 = (|a1〉+ |a2〉)/

√
2.
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Fig. 11. Atomic population on the upper levels P1(t) (dashed
curve), P2(t) (dotted curve) and P (t) (solid curve) as a func-
tion of the scaled time βt. Here ωc = 100β, ω12 = 0.2β, ω1c =
0.58036β, |Φ(0)〉 = (|a1〉+ |a2〉)/

√
2.

of the emitted radiation are one localized mode and one
propagating mode. The dressed state resulting from the
propagating mode also decay in time. The quantum in-
terference between the dressed states or the dressed state
and the quasi-dressed state leads to the quasi-oscillatory
behavior of the population (see Figs. 7 and 8). Comparing
Figures 7 and 8, we notice that the decay of the population
in Figure 7 is more slow than that in Figure 8. The reason
is that the diffusion field causes the upper-level population
decay in a manner of the power law while the propagat-
ing field makes the upper-level population decay exponen-
tially. These decays are more slow than that in the case of
the isotropic dispersion relation and the population oscil-
late many cycles (∼ 103) before eventually decay to their
final values. This is because that the energy can travel
away from the atom along all the directions in the isotropic
case, while the energy can travel away from the atom along
some directions in the anisotropic case. When time goes to
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infinity, there is only the dressed state without decay hav-
ing contribution to the population, and P (t), P1(t), P2(t)
tend to constants P0, P10, P20 resulting in a fractionalized
steady-state population trapped in the upper levels for-
ever. The amount of population trapped in the upper lev-
els depends on the initial condition. As t → ∞, P10, P20

are directly proportional to |A1(0)(b(1)
1 −ω12)+A2(0)b(1)

1 |2
(ib(1)

1 is the pure imaginary root). We can prove that
P10, P20 can be minimized P10 = 0, P20 = 0 by choos-
ing the initial state A1(0)/A2(0) = −b(1)

1 /(b(1)
1 −ω12) (see

Fig. 9). There is no population in the upper levels and this
means the complete decay of population.

As it has been mentioned in the above sections, the
localized field does not exist in region IV and V in Fig-
ure 2. The emission radiation contains only one propa-
gating mode in region IV or two propagating mode in
region V. The propagating field dresses the atom to form
a decaying dressed state. Similar to region II, the diffusion
field in region IV is also so strong that it can not be ig-
nored and makes the atom dressed to form a quasi-dressed
state decaying in time. The quantum interference between
the dressed state and the quasi-dressed state in region IV
(see Fig. 10) or the quantum interference between the two
dressed states in region V (see Fig. 11) can both lead to
the quasi-oscillatory behavior of the population. In the
same way, comparing Figures 10 and 11, we can see that
the decay of the population in Figure 10 is more slow than
that in Figure 11. There is no localized field and the en-
ergy in propagating field or diffusion field can traveling
away from the atom. So the amount of the population can
decay to zero as time goes to infinity and realize the com-
plete decay of population for any initial state (see Figs. 10
and 11). This complete decay of population does not de-
pend on the initial state which is different from that in
the case of the isotropic dispersion relation. While in the
case of the isotropic dispersion relation, the localized field
always exists no matter what the relative position of the
two upper levels from the band edge are. So there is no
complete decay of population unless by choosing specific
initial state.

5 Conclusions

In summary, we have derived some interesting features
of spontaneous emission from a three-level atom embed-
ded in photonic crystals in which the anisotropic disper-
sion relation is taken into account. Because of no singu-
larity in DOS, these features are different from that in the
isotropic case. Besides the localized field and propagating
field, there is a distinct diffusion field in some regions. The
localized field can disappear which is due to no existence
of singularity in DOS. The population displays oscillatory,
quasi-oscillatory or complete decay behavior, depending
on the initial state and the relative position of the upper
levels from the band edge. The complete decay can also
be realized with any initial state in certain condition.

This work was supported in part by the Shanghai Educational
Council and FRG from Hong Kong Baptist University.

Appendix A: The calculation of Γ

The coupling constants g(j)
k (j = 1, 2) may be written in

the form

g(j) =
ωjdj
~

(
~

2ε0ωkV

)1/2

ek · uj , (A.1)

where uj are the unit vectors of the atomic dipole mo-
ments, ek are the two transverse unit vectors.

We first calculate Γ11,

Γ11 =
∑
k

g
(1)
k g

(1)
k

s− i(ω1 − ωk)

=
(ω1d1)2

2ε0~V
∑
k

(ek · u1)(ek · u1)
ωk[s− i(ω1 − ωk)]

=
(ω1d1)2

16ε0~π3

∫∫∫
d3k

ωk [s− i(ω1 − ωk)]

×
[
1− (k · u1)(k · u1)

k2

]
. (A.2)

Here we have replaced the sum by an integral via∑
k

→ V

(2π)3

∫∫∫
d3k

and used q = k − kn0 . There are eight symmetry points
kn0 (n = 1, 2, ...8) in the diamond dielectric structure and
the dispersion relation ωk = ωc +A|k−kn0 |2 can be turned
into the form ωk = ωc + A|k − kn0 |2 for this structure.
Assuming k = (k sin θ cosφ, k sin θ sinφ, k cos θ), u1 =
(0, 0, 1). The angle θ between the arbitrary k, whose di-
rection is near one of kn0 , and u1 can be replaced by the
angle θn between kn0 and u1 approximately. So we have

1− (k · u1)(k · u1)
k2

= sin2 θn.

Using the dispersion characteristics ωk = ωc +A|k−kn0 |2,
we can get

Γ11 =
(ω1d1)2

16ε0~π3
(

8∑
n=1

sin2 θn)

×
∫∫∫

d3k
[ωc +A|k− kn0 |2][s+ i(ωc − ω1) + iA|k− kn0 |2]

=
(ω1d1)2

16ε0~π3
(

8∑
n=1

sin2 θn)
∫∫∫

d3q
(ωc +Aq2)(s− iω1c + iAq2)

=
(ω1d1)2

4ε0~π2
(

8∑
n=1

sin2 θn)
∫ ∞

0

q2dq
(ωc +Aq2)(s− iω1c + iAq2)

= − iβ3/2
1√

ωc +
√
−ω1c − is

(A.3)

where

β
3/2
1 =

(ω1d1)2

8πε0~A3/2
(

8∑
n=1

sin2 θn).
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1

2πi

Z ω1ci−0

−∞i−0

f1(x)

G(x)
extdx =

X
j

f1(x
(1)
j )

G′(x
(1)
j )

ex
(1)
j t − 1

2πi

Z −∞+ω1ci

ω1ci

A1(0)(x− iω12)− [A1(0)−A2(0)]iβ3/2
√
ωc+i

√
ix+ω1c

x(x− iω12)− (2x−iω12)iβ3/2
√
ωc+i

√
ix+ω1c

extdx

=
X
j

f1(x
(1)
j )

G′(x
(1)
j )

ex
(1)
j t +

eiω1ct

2πi

Z ∞
0

A1(0)(iω2c − x)(ωc − ix)− iβ3/2[A1(0)−A2(0)](
√
ωc − i

√
−ix)

(x− iω1c)(x− iω2c)(ωc − ix) + iβ3/2(2x− iω1c − ω2c)(
√
ωc − i

√
−ix)

e−xtdx (B.2)

The phase angle is defined as −π2 < arg
√
−ω1c − is < π

2 .
In the same way, Γ22 can be worked out

Γ22 = − iβ3/2
2√

ωc +
√
−ω1c − is

(A.4)

where

β
3/2
2 =

(ω2d2)2

8πε0~A3/2
(

8∑
n=1

sin2 θn).

When the two dipole moments of the two transitions are
parallel to each other, i.e., u1 = u2,

Γ12 =
∑
k

g
(1)
k g

(2)
k

s− i(ω1 − ωk)

=
ω1d1ω2d2

2ε0~V
∑
k

(ek · u1)(ek · u2)
ωk[s− i(ω1 − ωk)]

= − i(β1β2)3/4

√
ωc +

√
−ω1c − is

· (A.5)

Hence, Γlm can be written as follows:

Γ11 = − iβ3/2
1√

ωc +
√
−ω1c − is

,

Γ22 = − iβ3/2
2√

ωc +
√
−ω1c − is

,

Γ12 = − i(β1β2)3/4

√
ωc +

√
−ω1c − is

(parallel).

Appendix B: The calculation of A1(t), A2(t)
and Bk(t)

Some functions are defined as follows:

f1(x) = (x− iω12)
[A1(0)(x− iω12) +A2(0)x]

(2x− iω12)
,

f2(x) = x
[A1(0)(x− iω12) +A2(0)x]

(2x− iω12)
,

f3(x) = A1(0)(x− iω12) +A2(0)x,

G(x) = x(x− iω12)− iβ3/2 (2x− iω12)
(
√
ωc +

√
−ix− ω1c)

,

H(x) = x(x− iω12)− iβ3/2 (2x− iω12)
(
√
ωc − i

√
ix+ ω1c)

,

K1(x) = β3/2
√
−ix(x− iω2c)(ωc − ix)
× [A1(0)(x− iω2c) +A2(0)(x− iω1c)],

K2(x) = β3/2
√
−ix(x− iω1c)(ωc − ix)
× [A1(0)(x− iω2c) +A2(0)(x− iω1c)],

R1(x) = [(x− iω1c)(x− iω2c)(ωc − ix)

+ iβ3/2(2x− iω1c − iω2c)
√
ωc]2,

R2(x) = ixβ3(2x− iω1c − iω2c)2.

From G(x),H(x), we can get

G′(x) = 2x− iω12 −
2iβ3/2

√
ωc +

√
−ix− ω1c

+
(2x− iω12)β3/2

2
√
−ω1c − ix(

√
ωc +

√
−ix− ω1c)2

,

H ′(x) = 2x− iω12 −
2iβ3/2

√
ωc − i

√
ix+ ω1c

+
(2ix+ ω12)β3/2

2
√
ω1c + ix(

√
ωc − i

√
ix+ ω1c)2

·

Using the inverse Laplace transform, we have

A1(t) =
1

2πi

∫ σ+i∞

σ−i∞
A1(s)estds =

1
2πi

∫ σ+i∞

σ−i∞

f1(x)
G(x)

extdx

=
∑
j

f1(x(1)
j )

G′(x(1)
j )

ex
(1)
j t − 1

2πi

[∫ ω1ci−0

−∞i−0

+
∫ −∞i+0

ω1ci+0

]

× f1(x)
G(x)

extdx, (B.1)

where x(1)
j are the roots of the equation G(x) = 0, the real

number σ is chosen so that x = σ lies to the right of all
the singularities x(1)

j

see equation (B.2) above.
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2πi
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√
ωc + i

√
−ix)

e−xtdx (B.3)

Note that here x(1)
j are the roots of G(x) = 0 in the region

Im(x) < ω1c and Re(x) < 0
see equation (B.3) above

where x
(2)
j are the roots of H(x) = 0, and satisfy

Im(x(2)
j ) < ω1c and Re(x(2)

j ) < 0.
Substituting equations (B.2, B.3) into equation (B.1),

we have

A1(t) =
∑
j

f1(x(1)
j )

G′(x(1)
j )

ex
(1)
j t +

∑
j

f1(x(2)
j )

H ′(x(2)
j )

ex
(2)
j t

− eiω1ct

πi

∫ ∞
0

K1(x)
R1(x) + R2(x)

e−xtdx. (B.4)

In equation (B.4), x(1)
j are the roots of G(x) = 0 in the

region Im(x(1)
j ) > ω1c or Re(x(1)

j ) > 0; x(2)
j are the roots of

H(x) = 0 in the region Im(x(2)
j ) < ω1c and Re(x(2)

j ) < 0.
Similarly, A2(t) takes the following form:

A2(t) = e−iω12t

∑
j

f2(x(1)
j )

G′(x(1)
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ex
(1)
j t +
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(2)
j t


− eiω2ct

πi
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R1(x) + R2(x)

e−xtdx. (B.5)

From equations (4), we can get

∂Bk(t)
∂t

= gkA1(t)ei(ωk−ω1)t + gkA2(t)ei(ωk−ω2)t
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Therefore,
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Appendix C: The proof of the pure imaginary
roots of G(s) = 0

We now discuss the pure imaginary roots of the following
equation and their ranges

s(s− iω12)− (2s− iω12)iβ3/2

√
ωc +

√
−is− ω1c

= 0. (C.1)

If we set s/β = ix (x is a real number), and ω12/β =
Ω12 > 0, ω1c/β = Ω1c, ωc/β = Ωc, the above equation
becomes:

−x(x−Ω12) +
2x−Ω12√

Ωc +
√
x−Ω1c

= 0. (C.2)

Obviously, if there are real roots for equation (C.2), the
roots are at least in the ranges x > Ω1c.

For convenience, we define the following functions,

y1 = −x(x−Ω12), y2 = x− Ω12

2
,

y3 =
2√

Ωc +
√
x−Ω1c

,

Y = y1 + y2y3 = −x(x−Ω12) +
2x−Ω12√

Ωc +
√
x−Ω1c

,

Y ′ = −2x+Ω12 +
2√

Ωc +
√
x−Ω1c

− 2x−Ω12

2(
√
Ωc +

√
x−Ω1c)2

√
x−Ω1c

·

Then the equation (C.2) reduced to Y = 0.

C.1 Ω1c < 0

i. When x is in the range (Ω1c, 0), y1 < 0, y2y3 < 0,
we can find Y < 0, and there is no real root of the
equation Y = 0.

ii. When x is in the range [0, Ω12/2], we can find Y ′ > 0,
Y |x=0 < 0, Y |x=Ω12/2 = Ω2

12/4 > 0, and there is a real
root.

iii. When x is in the range (Ω12/2, Ω12), we can find Y >
0, and there is no real root.

iv. Finally, we consider the range x ∈ [Ω12,∞). Suppose
that the root of the equation y2 = y3 is x0. If x0 ∈
[Ω12/2, Ω12], it is easily verified that

Y ′ < (−2Ω12 +Ω12) + (Ω12 −
Ω12

2
)− 0 = −Ω12

2
< 0,
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Y |x=Ω12 > 0, Y |x→∞ < 0. and that there is a real
root. If x0 ∈ (Ω12,∞), we see that

Y > −x(x−Ω12) + (x− Ω12

2
)2 =

Ω2
12

4
> 0

for x ∈ (Ω12, x0),

Y ′ < −2x+Ω12 + (x− Ω12

2
)− 0 = −x+

Ω12

2
< 0

for x ∈ [x0,∞),

Y |x=x0 > −x0(x0 −Ω12) + (x0 −
Ω12

2
)2 =

Ω2
12

4
> 0,

Y |x→∞ < 0, and that there is a real root.

In brief, when Ω1c < 0, equation (C.2) has two and
only two real roots, which are in the ranges (0, Ω12/2)
and (Ω12,∞), respectively.

C.2 0 ≤ Ω1c < Ω12/2

i. When x ∈ (Ω1c, Ω12/2), we have Y ′ > 0, Y |x=Ω12/2 =
Ω2

12/4 > 0. Hence, if Y |x=Ω1c < 0, a real root exists in
this range, if Y |x=Ω1c > 0, there is not a real root in
this range. This dependents on Ω1c. If we set x = Ω1c,
we have

−Ω1c(Ω1c −Ω12) +
2Ω1c −Ω12√

Ωc

= 0. (C.3)

We can also find the roots of equation (C.3):

Ωa1c =
(
Ω12

2
+

1√
Ωc

)
−

√(
Ω12

2

)2

+
1
Ωc
,

Ωb1c =
(
Ω12

2
+

1√
Ωc

)
+

√(
Ω12

2

)2

+
1
Ωc

where 0 < Ωa1c < Ω12/2 < Ωb1c. That is to say, when
Ω1c = Ωa1c or Ω1c = Ωb1c, Y |x=Ω1c = 0, i.e., when
x = Ωa1c or x = Ωb1c, Y = 0. Here we will not consider
Ωb1c because Ωb1c > Ω12/2. We can see when x is in
the range (Ω1c, Ω12/2], Y ′ > 0, Y |x=Ωa1c

= 0 and 0 <
Ωa1c < Ω12/2. Hence whenΩ1c ∈ [0, Ωa1c], Y |x=Ω1c < 0,
a real root exists in the range x ∈ (Ω1c, Ω12/2). When
Ω1c ∈ (Ωa1c, Ω12/2), Y |x=Ω1c > 0, there is not a real
root in this range.

ii. When x ∈ (Ω12/2, Ω12), we have Y > 0. Hence, no
real root exists in this range.

iii. When x ∈ [Ω12,∞), we can easily find that a real root
exists, using the same manner in C.1 (iv).

In brief, when 0 ≤ Ω1c ≤ Ωa1c, two real roots of equa-
tion (C.2) exists, and lie in the ranges (Ω1c, Ω12/2] and
(Ω12,∞), respectively. When Ωa1c < Ω1c < Ω12/2, there
is only one root of equation (C.2) in the range (Ω12,∞).

C.3 Ω12/2 ≤ Ω1c ≤ Ω12

i. Obviously, Y > 0 for x ∈ (Ω1c, Ω12], there is no real
root in this region.

ii. For x ∈ (Ω12,∞), when Ω12/2 ≤ Ω1c ≤ Ω12/2 +
2/
√
Ωc, the root of the equation y2 = y3 exists, we

can know there is a root of equation (C.2) in the range
(Ω12,∞) in the similar way as C.1 (iv). When

Ω12/2 + 2/
√
Ωc < Ω1c ≤ Ω12,

there is no root of the equation y2 = y3 and y2 > y3.
Now, Y ′ < (0) + (x−Ω12/2)− 0 = 0, Y |x=Ω12 > 0,

Y |x→∞ = −∞(∞−Ω12) +
2∞−Ω12√

Ωc +
√
∞−Ω1c

→ −∞,

i.e., Y |x→∞ < 0. So there is a root of equation (C.2)
in the range (Ω12,∞).

In brief, when Ω12/2 ≤ Ω1c ≤ Ω12, equation (C.2) has
only one real root in the range (Ω12,∞).

C.4 Ω1c > Ω12

For x > Ω1c:

i. When Ω1c ≤ Ω12/2 + 2/
√
Ωc, suppose x0 is the root of

y2 = y3. In the range x ∈ (Ω1c, x0],

Y > −x(x−Ω12) + (x−Ω12/2)2 > 0,

and no real root exist. But in the range x ∈ (x0,∞),

Y ′ < Ω12 − 2x+ (x−Ω12/2)− 0 = Ω12/2− x < 0,

Y |x=x0 = Ω2
12/4 > 0, Y |x→∞ < 0, and a real root

exists.
ii. When Ω1c > Ω12/2 + 2/

√
Ωc, y2 > y3, Y ′ < 0,

and Y |x→∞ < 0. Now if Y |x=Ω1c > 0, there is a
real root, and if Y |x=Ω1c < 0, no real root exists. In
the same way in C.2 (i). Ωa1c < Ω12/2 + 2/

√
Ωc and

Ωb1c > Ω12/2 + 2/
√
Ωc. So we will only consider Ωb1c.

For Ω1c > Ω12/2 + 2/
√
Ωc, Y ′ < 0, Y |x=Ωb1c

= 0 and
Ωb1c > Ω12/2 + 2/

√
Ωc. So when Ω12 < Ω1c ≤ Ωb1c,

Y |x=Ω1c > 0, a real root exists in the range x ∈
(Ω1c,∞). When Ω1c > Ωb1c, Y |x=Ω1c < 0, no real root
exists in the range x ∈ (Ω1c,∞).

In brief, when Ω12 < Ω1c ≤ Ωb1c, a real root exists in
the range (Ω1c,∞). When Ω1c > Ωb1c, no real root exists
in this range.

In summary, we have the results:

(1) when Ωa1c < Ω1c ≤ Ωb1c, there is only one root
of the equation Y = 0, which is in the range
(max(Ω12, Ω1c),∞);

(2) when Ω1c ≤ Ωa1c, there are two roots of the equation
Y = 0, which are in the ranges (max(0, Ω1c), Ω12/2)
and (Ω12,∞), respectively.

In other words, when ωa1c < ω1c ≤ ωb1c, there is only
one pure imaginary root ib1 of the equation (C.1), and
b1 ∈ (max(ω12, ω1c),∞); when ω1c ≤ ω12/2, there are two
pure imaginary roots ib1 and ib2 of the equation (C.1),
and b1 ∈ (ω12,∞), b2 ∈ (max(0, ω1c), ω12/2).
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El(r, t) = Q
X
j

f3(x
(1)
j )

G′(x
(1)
j )

ZZZ
ei(ωk−ω1)t+ib

(1)
j t − 1

i(ωk − ω1) + ib
(1)
j

e−i(ωkt−q·r)d3q = Q
X
j

f3(x
(1)
j )

G′(x
(1)
j )

ZZZ
e−i(ω1−b

(1)
j )t − e−iωkt
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(1)
j

eiq·rd3q

= Q
2π

ir

X
j

f3(x
(1)
j )

G′(x
(1)
j )

Z ∞
0

e−i(ω1−b
(1)
j )t − e−iωkt

i(ωk − ω1) + ib
(1)
j

�
eiqr − e−iqr

�
qdq

= Q
2π

ir

X
j

f3(x
(1)
j )

G′(x
(1)
j )

�
e−i(ω1−b

(1)
j )t

Z ∞
−∞

qeiqr

i(ωk − ω1) + ib
(1)
j

dq −
Z ∞
−∞

qe−iωkt+iqr

i(ωk − ω1) + ib
(1)
j

dq

�

= Q
2π

ir

X
j

f3(x
(1)
j )

G′(x
(1)
j )

�
e−i(ω1−b

(1)
j

)tC(1)
a − C(1)

b

�
(D.4)

C(1)
a =

Z ∞
−∞

qeiqr

i(ωk − ω1) + ib
(1)
j

dq =
π

A
e
− r
lj (D.5)

C
(1)
b =

Z ∞
−∞

qe−iωkt+iqr

i(ωk − ω1) + ib
(1)
j

dq

=
π

A
e
i(b

(1)
j
−ω1)t−r

s
b
(1)
j
−ω1c
A Θ

0
@ r

2At
−

s
b
(1)
j − ω1c

A

1
A − e−iωct+

ir2
4At

Z ∞
−∞

(ρe
3π
4 i + r

2At
)e−Atρ

2
e

3π
4 i

iA(ρe
3π
4 i + r

2At )
2 − iω1c + ib

(1)
j

dρ (D.6)

Appendix D: The calculation of the radiated
field

The amplitude of the radiated field at a particular space
point r is

E(r, t) =
∑
k

√
~ωk
2ε0V

e−i(ωkt−k·r)Bk(t)ek

=
ω1d1

2ε0V

∑
k

Bk(t)
gk

e−i(ωkt−k·r)

(
u− k(k · u)

k2

)
=

ω1d1

16π3ε0

∑
n

eikn0 ·r
(

u− kn0 (kn0 · u)
(kn0 )2

)
×
∫∫∫

Bk(t)
gk

e−i(ωkt−q·r)d3q (D.1)

where we have used q = k− kn0 , d3q = d3k, and have re-
placed the sum by an integral via

∑
k → V/(2π)3

∫∫∫
d3k.

We defined

Q =
ω1d1

16π3ε0

∑
n

eikn0 ·r
(

u− kn0 (kn0 · u)
(kn0 )2

)
.

We assume that

q = q(sin θ cosφ, sin θ sinφ, cos θ).

and r is parallel to z-axis.
From equation (B.7), we can see that, Bk(t) is com-

posed of the contributions of the poles and an integral

Bk(t) = gk

∑
j

B
(1)
j +

∑
j

B
(2)
j +B(3)

 , (D.2)

where

B
(1)
j =

f3(x(1)
j )

G′(x(1)
j )

ei(ωk−ω1)t+x
(1)
j t − 1

i(ωk − ω1) + x
(1)
j

,

B
(2)
j =

f3(x(2)
j )

H ′(x(2)
j )

ei(ωk−ω1)t+x
(2)
j t − 1

i(ωk − ω1) + x
(2)
j

,

B(3) = − 1
πi

∫ ∞
0

[
K1(x) +K2(x)
R1(x) +R2(x)

]
ei(ωk−ωc)t−xt − 1
i(ωk − ωc)− x

dx.

In these above formulas, x(1)
j are the pure imaginary roots,

and x(2)
j are the complex roots.

So the field is

E(r, t) = Q

∫∫∫ ∑
j

B
(1)
j +

∑
j

B
(2)
j +B(3)


× e−i(ωkt−q·r)d3q = El(r, t) + Ep(r, t) + Ed(r, t). (D.3)

1. For the pure imaginary root x(1)
j = ib(1)

j , we have

ω1 − b(1)
j < ωc

see equations (D.4–D.6) above

where lj =
(
b
(1)
j −ω1c

A

)−1/2

.
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From equations (D.4–D.6), we can obtain
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ir

X
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f3(x
(1)
j )

G′(x
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(D.7)

where Θ(x) is the step function: for x ≥ 0, Θ(x) = 1, and for x < 0, Θ(x) = 0. The first term represents a localized field at

frequency ω1 − b(1)
j . The size of the localized photon mode is

�
b
(1)
j −ω1c

A

�−1/2

. The second term will be zero as time t→∞.

2. For the complex root x
(2)
j = a

(2)
j + ib

(2)
j , we have a

(2)
j < 0, ω1 − b(2)

j > ωc.
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From equations (D.8–D.10), we can obtain
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In the above equation, the second term decays to zero and can be neglected as time t→∞. The first term is a pulse.
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3. Similarly, we can obtain the contribution of B(3)
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From equations (D.12–D.14), we can obtain
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